Monday, September 28, 2015

Tribonacci Sequence Beginning with a(0) = a(1) = a(2) = 1

9/28/2015



The Tribonacci Sequence (the one that start with three 1’s and no zeros)
Tribonacci numbers: a(0) = a(1) = a(2) = 1 and when n>2 then
a(n) = a(n-1) + a(n-2) + a(n-3).
999,998,999,999,999,997,999,999,999,997,999,999,999,997,
999,999,999,997,999,999,999,997,999,999,999,997,999,999,
999,997,999,999,999,997,999,999,999,997,999,999,999,997,
999,999,999,998,000,001
1/9999989999999999979999999999979999999999979999999
999979999999999979999999999979999999999979999999999
97999999999997999999999997999999999998000001 =
0.
000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000000  000001  000001  000001  000003  000005  000009  000017  000031  000057  000105  000193  000355  000653  001201  002209  004063  007473  013745  025281  046499  085525  157305  289329  532159 
Terms are written in six digit strings.
Terms are accurate up to 532,159, which is the 23rd non-zero
term.
Compare with OEIS sequence A000213.

This is good news.  It is the first Fibonacci like sequence that starts with
all ones that I have found a Sequence Number for.


David

2 comments:

  1. 1,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,-1 24-nacci Sequence

    ReplyDelete
  2. a(0) = a(1) = ··· = a(22) = 0 , a(23) = 1 。

    when n>23 then

    a(n) = a(n-1) + 2*a(n-3) + 2*a(n-5) + 2*a(n-7) + 2*a(n-9) + 2*a(n-11) + 2*a(n-13) + 2*a(n-15) + 2*a(n-17) + 2*a(n-19) + 2*a(n-21) + 2*a(n-23) - a(n-24) 。

    ReplyDelete