SEQUENCE
NUMBERS THAT SHOW MULTIPLES OF A NUMBER:
(Can sequence numbers do more than count?)
Can we adapt what we know about counting
sequences to create sequences that show multiples of numbers (other than one)?
Suppose we want to have a digital sequence
that shows multiples of 3 (or as some people would say “counts by
threes”). I could start with the
sequence number 998001, and its inverse 1/998001. I haven’t changed anything yet – so I know it
still counts by ones.
But if I do change it by multiplying the
fraction by 3 (3/998001) well, this is not the inverse of an integer – we need
to have a 1 on top of the fraction. That’s OK here, because 3/998001 simplifies
(the numerator and the denominator are both divisible by 3) and I get 1/332667.
Multiples of Three
The sequence number is 332,667.
1/332667 =
0.
000 003 006 009 012 015 018 021 024 027 030 033 036 039 042 045 048 051 054 057 060 063 066 069 072 075 078 081 084 087 090 093 096 099 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 291 294 297 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360 363 366 369 372 375 378 381 384 387 390 393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444 447 450 453 456 459 462 465 468 471 474 477 480 483 486 489 492 495 498 501 504 507 510 513 516 519 522 525 528 531 534 537 540 543 546 549 552 555 558 561 564 567 570 573 576 579 582 585 588 591 594 597 600 603 606 609 612 615 618 621 624 627 630 633 636 639 642 645 648 651 654 657 660 663 666 669 672 675 678 681 684 687 690 693 696 699 702 705 708 711 714 717 720 723 726 729 732 735 738 741 744 747 750 753 756 759 762 765 768 771 774 777 780 783 786 789 792 795 798 801 804 807 810 813 816 819 822 825 828 831 834 837 840 843 846 849 852 855 858 861 864 867 870 873 876 879 882 885 888 891 894 897 900 903 906 909 912 915 918 921 924 927 930 933 936 939 942 945 948 951 954 957 960 963 966 969 972 975 978 981 984 987 990 993 …
Written in three digit strings.
This is a repeating decimal with a period
of 999.
Accurate to the 331st non-zero
term (331 * 3 = 993).
Compare with OEIS sequence A008585.
|
We were counting by ones, and we multiplied
by three so now we are counting by threes (or multiples of three). And the 3 in the numerator conveniently
canceled with a factor of three in the denominator. So we are good to go with this example.
So the secret here is to know which numbers
will factor out and which won’t. Threes
will almost always factor out (unless you have to many threes to factor
out). Twos and fives will never factor
out (the sequence numbers we have use all end in with a 1 – so they can’t be
divisible by 2 or by 5).
Let’s look as some of the other factors
first:
9,801
|
34
* 112
|
998,001
|
36
* 372
|
99,980,001
|
34
* 112 * 1012
|
9,999,800,001
|
34
* 412 * 2712
|
999,998,000,001
|
36
* 72 * 112 * 132 * 372
|
99,999,980,000,001
|
34
* 2392 * 46492
|
9,999,999,800,000,001
|
3^4
* 11^2 * 732 * 1012 * 1372
|
999,999,998,000,000,001
|
38
* 372 * 333,6672
|
99,999,999,980,000,000,001
|
32
* 112 * 412 * 2712 * 90912
|
9,999,999,999,800,000,000,001
|
34
* 216492 * 513,2392
|
999,999,999,998,000,000,000,
001
|
3^6
* 72 * 112 * 132 * 372 * 1012
* 99012
|
99,999,999,999,980,000,000,
000,001
|
34
* 532 * 792 * 265,371,6532
|
9,999,999,999,999,800,000,
000,000,001
|
34
* 112 * 2392 * 46492 * 909,0912
|
999,999,999,999,998,000,000,
000,000,001
|
36
* 312 * 372 * 412 * 2712 *
2,906,1612
|
99,999,999,999,999,980,000,
000,000,000,001
|
34
* 112 * 172 * 732 * 1012 * 1372
* 5,882,3532
|
9,999,999,999,999,999,800,000,
000,000,000,001
|
34
* 2,071,7232 * 5,363,222,3572
|
999,999,999,999,999,998,000,
000,000,000,000,001
|
38
* 72 * 112 * 132 * 192 * 372
* 525792 * 333,6672
|
99,999,999,999,999,999,
980,000,000,000,000,000,001 |
34
* 1,111,111,111,111,111,1112
|
9,999,999,999,999,999,
999,800,000,000,000,000, 000,001 |
34
* 112 * 412 * 1012 * 2712 * 35412
* 90912 * 279612
|
999,999,999,999,999,999,998,
000,000,000,000,000,000,001
|
36
* 372 * 432 * 2392 * 19332 * 46492
* 10,838,6892
|
99,999,999,999,999,999,999,
980,000,000,000,000,000,
000,001 |
34
* 114 * 232 * 40932 * 87792 *
216492 * 513,2392
|
9,999,999,999,999,999,999,
999,800,000,000,000,000,000, 000,001 |
34
* 11,111,111,111,111,111,111, 1112
|
999,999,999,999,999,999,999,
998,000,000,000,000,000,000, 000,001 |
36
* 72 * 112 * 132 * 372 * 732
* 1012 * 1372 * 99012 * 99,990,0012
|
99,999,999,999,999,999,999,
999,980,000,000,000,000,000, 000,000,001 |
34
* 412 * 2712 * 214012 * 256012 *
182,521,213,0012
|
9,999,999,999,999,999,999,
999,999,800,000,000,000, 000,000,000,000,001 |
34 *
112 * 532 * 792 * 8592 *
2653716532 * 10583130492
|
999,999,999,999,999,999,
999,999,998,000,000,000, 000,000,000,000,000,001 |
310 *
372 * 7572 * 3336672 * 4403346547776312
|
99,999,999,999,999,999,999,
999,999,980,000,000,000,000, 000,000,000,000,001 |
34 *
112 * 292 * 1012 * 2392 * 2812
* 46492 * 9090912 * 1214994492
|
9,999,999,999,999,999,999,999, 999,999,800,000,000,000,000,
000,000,000,000,001 |
34 *
31912 * 167632 * 430372 * 620032
* 778438393972
|
999,999,999,999,999,999,999,
999,999,998,000,000,000,000, 000,000,000,000,000,001 |
36 * 72
* 112 * 132 * 312 * 372 * 412
* 2112 * 2412 * 2712 * 21612 *
90912 * 29061612
|
Notice that they don’t all have the same
factors, so not every sequence number will work every time. But if you look hard you may find some that
do work for your specific situation.
999,998,000,001 has factors of 3, 7, 11,
13, and 37, so I can use it to find a sequence number that lists its term in 6
digit strings for multiples of 3, 7, 11, 13, and 37. So 3/999998000001, 7/999998000001, 11/999998000001,
13/999998000001, and 37/999998000001 can all be used – they will all simplify.
But it will also work for combinations of
these numbers 3 * 7 = 21, 3 * 11 = 33, 3 * 13 = 39, and 3 * 37 = 111. 7 * 11 = 77, 7 * 13 = 91, 7 * 37 = 259, 11 *
13 = 143, 11 * 37 = 407, and 13 * 37 = 481,
And don’t forget, all of these factors occur twice, except for 3 which
occurs 6 times – so we can use cancel out numbers like 9, 42, 49, 99, 121, 169
and several others.
I’m not going to list all of the
possibilities, but I will give you some examples.
Suppose I wanted a sequence number that
would produce a sequence of terms that were all of the multiples of 123. The prime factors of 123 are 3 and 41. So I need to find a number in the table above
that has factors of 3 and 41. 9,999,800,001
will work, but so will 99,999,999,980,000,000,001 and
999,999,999,999,998,000,000,000,000,001.
The first will produce terms written in five digit strings, the second
in 10 digit strings, and the third in 15 digit strings. Since multiples of 123 will grow faster that
multiples of 1, I need to pick a string size that is appropriate (If you are
not sure just guess, check, and try again until you find what you need.). I’m going to try the middle one. If I don’t like the results, I can change it
123/99999999980000000001 simplifies to 1/813008129918699187.
So 813,008,129,918,699,187 will be our
sequence number.
1/813008129918699187 =
0.
0000000000 0000000123 0000000246 0000000369 0000000492 0000000615 0000000738 0000000861 0000000984 0000001107 0000001230 0000001353 0000001476 0000001599 0000001722 0000001845 0000001968 0000002091 0000002214 0000002337 0000002460 0000002583 0000002706 0000002829 0000002952 0000003075 0000003198 0000003321 0000003444 0000003567 0000003690 0000003813 0000003936 0000004059 0000004182 0000004305 0000004428 0000004551 0000004674 0000004797 0000004920 0000005043 0000005166 0000005289 0000005412 0000005535 0000005658 0000005781 0000005904 0000006027 0000006150 0000006273 0000006396 0000006519 0000006642 0000006765 0000006888 0000007011 0000007134 0000007257 0000007380 0000007503 0000007626 0000007749 0000007872 0000007995 0000008118 0000008241 0000008364 0000008487 0000008610 0000008733 0000008856 0000008979 0000009102 0000009225 0000009348 0000009471 0000009594 0000009717 0000009840 0000009963 0000010086 0000010209 0000010332 0000010455 0000010578 0000010701 0000010824 0000010947 0000011070 0000011193 0000011316 0000011439 0000011562 0000011685 0000011808 0000011931 0000012054 0000012177 0000012300 0000012423 0000012546 0000012669 0000012792 0000012915 0000013038 0000013161 0000013284 0000013407 0000013530 0000013653 0000013776 0000013899 0000014022 0000014145 0000014268 0000014391 0000014514 0000014637 0000014760 0000014883 0000015006 0000015129 0000015252 0000015375 0000015498 0000015621 0000015744 0000015867 0000015990 0000016113 0000016236 0000016359 0000016482 0000016605 0000016728 0000016851 0000016974 0000017097 0000017220 0000017343 0000017466 0000017589 0000017712 0000017835 0000017958 0000018081 0000018204 0000018327 0000018450 0000018573 0000018696 0000018819 0000018942 0000019065 0000019188 0000019311 0000019434 0000019557 0000019680 0000019803 0000019926 0000020049 0000020172 0000020295 0000020418 0000020541 0000020664 0000020787 0000020910 0000021033 0000021156 0000021279 0000021402 0000021525 0000021648 0000021771 0000021894 0000022017 0000022140 0000022263 0000022386 0000022509 0000022632 0000022755 0000022878 0000023001 0000023124 0000023247 0000023370 0000023493 0000023616 0000023739 0000023862 0000023985 0000024108 0000024231 0000024354 0000024477 0000024600 0000024723 0000024846 0000024969 0000025092 0000025215 0000025338 0000025461 0000025584 0000025707 0000025830 0000025953 0000026076 0000026199 0000026322 0000026445 0000026568 0000026691 0000026814 0000026937 0000027060 0000027183 0000027306 0000027429 0000027552 0000027675 0000027798 0000027921 0000028044 0000028167 0000028290 0000028413 0000028536 0000028659 0000028782 0000028905 0000029028 0000029151 0000029274 0000029397 0000029520 0000029643 0000029766 0000029889 0000030012 0000030135 0000030258 0000030381 0000030504 0000030627 0000030750 0000030873 0000030996 0000031119 0000031242 0000031365 0000031488 0000031611 0000031734 0000031857 0000031980 0000032103 0000032226 0000032349 0000032472 0000032595 0000032718 0000032841 0000032964 0000033087 0000033210 0000033333 0000033456 0000033579 0000033702 0000033825 0000033948 0000034071 0000034194 0000034317 0000034440 0000034563 0000034686 0000034809 0000034932 0000035055 0000035178 0000035301 0000035424 0000035547 0000035670 0000035793 0000035916 0000036039 0000036162 0000036285 0000036408 0000036531 0000036654 0000036777 0000036900 0000037023 0000037146 0000037269 0000037392 0000037515 0000037638 0000037761 0000037884 0000038007 0000038130 0000038253 0000038376 0000038499 0000038622 0000038745 0000038868 0000038991 0000039114 0000039237 0000039360 0000039483 0000039606 0000039729 0000039852 0000039975 0000040098 0000040221 0000040344 0000040467 0000040590 0000040713 0000040836 0000040959 0000041082 0000041205 0000041328 0000041451 0000041574 0000041697 0000041820 0000041943 0000042066 0000042189 0000042312 0000042435 0000042558 0000042681 0000042804 0000042927 0000043050 0000043173 0000043296 0000043419 0000043542 0000043665 0000043788 0000043911 0000044034 0000044157 0000044280 0000044403 0000044526 0000044649 0000044772 0000044895 0000045018 0000045141 0000045264 0000045387 0000045510 0000045633 0000045756 0000045879 0000046002 0000046125 0000046248 0000046371 0000046494 0000046617 0000046740 0000046863 0000046986 0000047109 0000047232 0000047355 0000047478 0000047601 0000047724 0000047847 0000047970 ...
This sequence number produces multiples
of 123, beginning with 0 * 123, and writing them in 10 digit strings.
Accurate to the 390th non-zero
term (390 * 123 = 47970), which is the limit of my computation.
This sequence is not in the OEIS.
|
We still have problem producing sequence
numbers that end up showing multiples of some numbers.
You may have noticed that all of the
sequence numbers that produce counting sequences end in a “1”. Any number that ends in 1 cannot be divisible
by 2 or 5. So I did not show you a
sequence number that shows multiples of 2 or 5 – yet.
I have developed two methods of dealing
with this issue – but you may not consider them to be valid solutions. For now just watch and learn. Then you will have time to think about these
methods and decide if you thing they are OK, or not OK.
Multiples of 2
2/998001 does not simplify. However, 2/998001 can be written as the sum
of two unit fractions 1/499001 and 1/498003497001. (Which brings up the issue of using more
than 1 fraction – is it fair?) So
let’s do it.
2/998001 =
1/499001 + 1/498003497001 =
0.
000 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 066 068 070 072 074 076 078 080 082 084 086 088 090 092 094 096 098 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360 362 364 366 368 370 372 374 376 378 380 382 384 386 388 390 392 394 396 398 400 402 404 406 408 410 412 414 416 418 420 422 424 426 428 430 432 434 436 438 440 442 444 446 448 450 452 454 456 458 460 462 464 466 468 470 472 474 476 478 480 482 484 486 488 490 492 494 496 498 500 502 504 506 508 510 512 514 516 518 520 522 524 526 528 530 532 534 536 538 540 542 544 546 548 550 552 554 556 558 560 562 564 566 568 570 572 574 576 578 580 582 584 586 588 590 592 594 596 598 600 602 604 606 608 610 612 614 616 618 620 622 624 626 628 630 632 634 636 638 640 642 644 646 648 650 652 654 656 658 660 662 664 666 668 670 672 674 676 678 680 682 684 686 688 690 692 694 696 698 700 702 704 706 708 710 712 714 716 718 720 722 724 726 728 730 732 734 736 738 740 742 744 746 748 750 752 754 756 758 760 762 764 766 768 770 772 774 776 778 780 782 784 786 788 790 792 794 796 798 800 802 804 806 808 810 812 814 816 818 820 822 824 826 828 830 832 834 836 838 840 842 844 846 848 850 852 854 856 858 860 862 864 866 868 870 872 874 876 878 880 882 884 886 888 890 892 894 896 898 900 902 904 906 908 910 912 914 916 918 920 922 924 926 928 930 932 934 936 938 940 942 944 946 948 950 952 954 956 958 960 962 964 966 968 970 972 974 976 978 980 982 984 986 988 990 992 994 996
Written in three digit strings.
Accurate to 498th non-zero
term (996), then it skips 998, and it starts doing odd numbers. (Note that 998 is the only one, two, or three
digit even number that it skipped.)
Compare with OEIS sequence A005843.
|
Multiples of 5:
5/998002 does not simplify, but it can be
converted into three fractions that all have 1 as their numerator. I can add the results of each of these
fractions to get the results that I am looking for. This means it is not at type 1 sequence
number, but it is still mathematically kewl.
(“Kewl” is pronounced like “cool” and “kool”, but it does not refer to
the temperature, a childs drink, or a brand of cigarettes.)
5/998001 =
1/199601 + 1/49800499401 + 1/3306786320735534645667
=
0.
000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 095 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 …
The sequence only skips one multiple of 5
(1, 2, or 3 digit multiples of 5).
It also has an extra zero at the
beginning of the decimal expansion. It
sticks out like a sore thumb.
Written in three digit strings.
Accurate up to 990, the 198th
non-zero term.
Compare with OEIS sequence A008587.
|
So at this point we know how to find a
sequence number that will produce a decimal expansion that counts as high as
we want one to count.
And we can find a sequence number that
will show multiples of 3, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 73,
79, 101, 137, 211, 239, 241, 271, 281, 757, 859 (and some larger primes), and
some combinations of these numbers. We
also know that we can find ways to deal with some of the numbers that we can’t
deal with using the method mentioned above.
So right now you know more about how to
find sequence numbers than … well, everybody that has not visited this site –
which is almost everybody.
Welcome to the Sequence Number Wizard
Club!
Stick around, check back later and you
will learn more.
|
David
Multiples of 4 :
ReplyDelete1/249500250 =
0 . 000 000 004 008 012 016 020 024 028 032 036 040 044 048 052 056 060 064 068 072 076 080 084 088 092 096 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 ...
Multiples of 6 :
1/166333500 =
0 . 000 000 006 012 018 024 030 036 042 048 054 060 066 072 078 084 090 096 102 108 114 120 126 132 138 144 150 156 162 168 174 180 186 192 198 204 210 216 222 228 234 240 246 252 258 264 270 276 284 288 294 300 ...
Multiples of 8 :
ReplyDelete1/124750125 =
0 . 000 000 008 016 024 032 040 048 056 064 072 080 088 096 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 256 264 272 280 288 296 304 312 320 ...
Multiples of 9 :
ReplyDelete1/110889 =
0 . 000 009 018 027 036 045 054 063 072 081 090 099 108 117 126 135 144 153 162 171 180 189 198 207 216 225 234 243 252 261 270 279 288 297 306 315 324 333 342 351 360 369 378 387 396 405 414 423 432 441 450 459 468 477 486 495 504 513 522 531 540 549 558 567 576 585 594 603 612 621 630 639 648 657 666 675 684 693 702 711 720 729 738 747 756 765 774 783 792 801 810 819 828 837 846 855 864 873 882 891 900 909 918 927 936 945 954 963 972 981 ...