The Lucas Sequence is defined as: a(1) =
2, a(2) = 1, and when n>2 then a(n) = a(n-1) + a(n-2)
I was unable to find a Sequence Number
for the Lucas Sequence. But the
following fraction does produce the terms of the Lucas Sequence, using three
digit strings.
1999/998999 =
0.
002 001 003 004 007 011 018 029 047 076 123 199 322 521 …
The fraction 1999999/999998999999
produces terms written in six digit strings.
And 1999999999999/999999999998999999999999 produces terms written in
twelve digit strings.
1999999999999/999999999998999999999999 =
0.
000000000002..000000000001 000000000003 000000000004 000000000007 000000000011 000000000018 000000000029 000000000047 000000000076 000000000123 000000000199 000000000322 000000000521 000000000843 000000001364 000000002207 000000003571 000000005778 000000009349 000000015127 000000024476 000000039603 000000064079 000000103682 000000167761 000000271443 000000439204 000000710647 000001149851 000001860498 000003010349 000004870847 000007881196 000012752043 000020633239 000033385282 000054018521 000087403803 000141422324 000228826127 000370248451 000599074578 000969323029 001568397607 002537720636 004106118243 006643838879 010749957122 017393796001 028143753123 045537549124 073681302247 119218851371 192900153618 312119004989 505019158607 …
Terms are written in 12 digit terms.
Terms are accurate up to the 57th
non-zero term.
Compare with OEIS sequence A000032.
|
David
No comments:
Post a Comment