Shades of “Cantor’s Dust”
The 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1 “27-nacci” Sequence (or just “27-nacci” Sequence):
Defined as: a(0) = … = a(25) = 0, a(26) =
1, and when n>26 then
a(n) = a(n-1) + a(2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) + a(n-8) + a(n-9) + a(n-10) + a(11) + a(12) + a(n-13) + a(n-14) + a(n-15) + a(n-16) + a(n-17) + a(n-18) + a(n-19) + a(20) + a(n-21) + a(n-22) + a(n-23) + a(n-24) + a(n-25) + a(n-26) + a(n-27).
The Sequence Number is
999,999,899,999,989,999,998,999,999,899,999,989,999,
998,999,999,899,999,989,999,998,999,999,899,999,989, 999,998,999,999,899,999,989,999,998,999,999,899,999, 989,999,998,999,999,899,999,989,999,998,999,999,899, 999,989,999,998,999,999,899,999,989,999,999
1/999999899999989999998999999899999989999998999
99989999998999999899999989999998999999899999989 99999899999989999998999999899999989999998999999 89999998999999899999989999998999999899999989999 999 =
0.
0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000001 0000001 0000002 0000004 0000008 0000016 0000032 0000064 0000128 0000256 0000512 0001024 0002048 0004096 0008192 0016384 0032768 0065536 0131072 0262144 0524288 1048576 2097152 4194304 …
Terms are written in seven digit strings.
Terms are accurate up to the 24th
non-zero term.
This sequence is not listed in the OEIS –
yet!
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1 “27-nacci” Sequence:
Defined as: a(0) = … = a(25) = 0, a(26) =
1, and when n>26
then a(n) = a(n-1) + a(2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) + a(n-8) + a(n-9) + a(n-19) + a(20) + a(n-21) + a(n-22) + a(n-23) + a(n-24) + a(n-25) + a(n-26) + a(n-27).
The Sequence Number is
999,999,899,999,989,999,998,999,999,899,999,989,999,
998,999,999,899,999,989,999,998,999,999,999,999,999, 999,999,999,999,999,999,999,999,999,999,999,999,999, 999,999,999,999,999,899,999,989,999,998,999,999,899, 999,989,999,998,999,999,899,999,989,999,999
1/999999899999989999998999999899999989999998999
99989999998999999899999999999999999999999999999 99999999999999999999999999999999999999998999999 89999998999999899999989999998999999899999989999 999 =
0.
0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000001 0000001 0000002 0000004 0000008 0000016 0000032 0000064 0000128 0000256 0000511 0001021 0002040 0004076 0008144 0016272 0032512 0064960 0129792 0259329 0518148 1035277 2068518 4132968 …
Terms are written in seven digit strings.
Terms are accurate up to the 24th
non-zero term.
This sequence is not listed in the OEIS
collection.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 1, 1, 1 “27-nacci” Sequence:
Defined as: a(0) = … = a(25) = 0, a(26) =
1, and when n>26
then a(n) = a(n-1) + a(2) + a(n-3) + a(n-7) + a(n-8) + a(n-9) + a(n-19) + a(20) + a(n-21) + a(n-25) + a(n-26) + a(n-27).
The Sequence Number is
999,999,899,999,989,999,998,999,999,999,999,999,999,
999,999,999,899,999,989,999,998,999,999,999,999,999, 999,999,999,999,999,999,999,999,999,999,999,999,999, 999,999,999,999,999,899,999,989,999,998,999,999,999, 999,999,999,999,999,999,899,999,989,999,999
1/999999899999989999998999999999999999999999999
99989999998999999899999999999999999999999999999 99999999999999999999999999999999999999998999999 89999998999999999999999999999999999899999989999 999 =
0.
0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000001 0000001 0000002 0000004 0000007 0000013 0000024 0000045 0000084 0000157 0000293 0000547 0001021 0001905 0003555 0006634 0012380 0023103 0043114 0080459 0150151 0280209 0522920 0975862 1821132 3398556 …
Terms are written in seven digit terms.
Terms are accurate up to the 26th
non-zero term.
This sequence is not listed in the OEIS
collection.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 1, 0, 1 “27-nacci” Sequence:
Defined as: a(0) = … = a(25) = 0, a(26) =
1, and when n>26
then a(n) = a(n-1) + a(n-3) + a(n-7) + a(n-9) + a(n-19) + a(n-21) + a(n-25) + a(n-27).
The Sequence Number is
999,999,899,999,999,999,998,999,999,999,999,999,999,
999,999,999,899,999,999,999,998,999,999,999,999,999, 999,999,999,999,999,999,999,999,999,999,999,999,999, 999,999,999,999,999,899,999,999,999,998,999,999,999, 999,999,999,999,999,999,899,999,999,999,999
1/999999899999999999998999999999999999999999999
99989999999999999899999999999999999999999999999 99999999999999999999999999999999999999998999999 99999998999999999999999999999999999899999999999 999 =
0.
0000000
0000000 0000000 0000000
0000000 0000000
0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000001 0000001 0000001 0000002 0000003 0000004 0000006 0000010 0000015 0000023 0000036 0000055 0000084 0000129 0000198 0000303 0000465 0000714 0001095 0001681 0002580 0003959 0006075 0009322 0014304 0021949 0033681 0051683 0079308 0121699 0186747 0286563 0439731 0674766 1035426 1588860 2438103 3741264 5740965 …
Terms are written in seven digit strings.
Terms are accurate up to the 39th
non-zero term.
This sequence is not listed in the OEIS
collection – yet!
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Since OEIS does not list any of the
sequences shown above I developed
a spreadsheet to calculate the terms in each of the sequences showing all terms with seven digits or less. You can compare the sequences shown above (calculated via Sequence Number) to the terms shown below (calculated by recursive calculations in a spreadsheet). You will not hurt my feelings if you decide to do the calculations yourself – I did the same thing when I first saw a Sequence Number on the web. I was skeptical and did the calculations myself.
|
These Sequence Numbers are the largest (longest) that I have been able to calculate with so far. I was able to get seven digit strings, but when I tried to get eight digit strings the Sequence Number was to long for me to use on Wolfram Alpha. I'm not complaining, not many calculations need to use an input of 200 or more digits, or an output of 3900 digits..
Did you catch the comparison of these sequences with “Cantor’s Dust”?
Did you catch the comparison of these sequences with “Cantor’s Dust”?
David
0, 1, 1 Tribonacci Sequence
ReplyDeletea(0) = a(1) = 0 , a(2) = 1 ; and when n>2 then , a(n) = a(n-2) + a(n-3) .
1/999999999998999999 =
0 . 000000 000000 000001 000000 000001 000001 000001 000002 000002 000003 000004 000005 000007 000009 000012 000016 000021 000028 000037 000049 000065 000086 000114 000151 000200 000265 000351 000465 000616 000816 001081 001432 001897 002513 003329 004410 005842 007739 010252 013581 017991 023833 031572 041824 055405 073396 097229 128801 170625 226030 299426 396655 525456 696081 ...