Building
Pascal’s Triangle Using Sequence Numbers
David Brooks
SAWB, BE, MS, MS
What
is Pascal’s Triangle?
Pascal’s triangle is well described on
several sites on the internet. I don’t
think I could do better, so I have listed several websites that do a good job
of this. If you do not already know what
Pascal’s triangle is please visit one or more of the sites listed below.
See:
|
Rows zero through
five of Pascal’s Triangle – Wikipedia
This image also
shows at least the beginning of the first five diagonals.
|
What
are Sequence Numbers?
They are integers that have a special
property. When you calculate the decimal
expansion of the inverse of a Sequence Number you get a recognizable number
sequence (many of these sequences are listed in the Online Encyclopedia of
Integer Sequences ( www.OEIS.org )
What kind of mathematics do I need to know
in order to work with Sequence Numbers?
You need to know how to take the inverse of
an integer. The inverse of 123 is “1
over 123” or “1 divided by 123” (1/123).
You also need to know how to do long
division – really long division that you can’t do on your calculator. But don’t worry – you can do it by hand on
paper OR you can get on the internet and go to ( www.wolframalpha.com ) and use this free
“super calculator”. It will take inputs
of about 200 digits, and can provide an output of about 3900 digits.
I would not have been able to do these
calculations without access of the Wolfram Alpha website. And I could not check my answers without the
OEIS website. I would recommend you get
on these websites and play around with them to learn how to use them.
However if you understand how to create the
inverse of an integer, and you understand how to take a fraction and do long
division to get its decimal expansion (how to change a fraction into a
decimal), and you learn how to do
these computations on the internet, then you will have it made.
What is Pascal’s triangle?
Look it up on the internet or ask your math
teacher or math professor.
Wikipedia has a good article article about
Pascal’s triangle: (https://en.wikipedia.org/wiki/Pascal's_triangle )
Cut The Knot also has a good article: (http://www.cut-the-knot.org/arithmetic/combinatorics/PascalTriangleProperties.shtml )
The Numbers in the First Diagonal of
Pascal’s Triangle:
OK, this is the easy one.
A Sequence Number that generates the
terms in the first diagonal (left or right side) is 9. This Sequence Number generates terms
written in single digit strings. Now
all we have to do is calculate the decimal expansion of the inverse of this
number.
(I usually separate these terms with
spaces, to make them easier to separate the terms while you are reading
them.)
1/9 =
0.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... |
The Numbers in the Second
Diagonal of Pascal’s Triangle:
A Sequence Number that
produces the terms in the second diagonal of Pascal’s Triangle is 999,998,000,001. This particular Sequence Number produces
terms written in six digit strings.
1/999998000001 =
0.
000000 000001 000002 000003 000004 000005 000006 000007 000008 000009 000010 000011 000012 000013 000014 000015 000016 000017 000018 000019 000020 000021 000022 000023 000024 000025 000026 000027 000028 000029 000030 000031 000032 …
(This sequence of
numbers are also known as the “counting numbers”.)
|
The Numbers in the Third
Diagonal of Pascal’s Triangle:
A Sequence Number that
will produce a list of the terms in the third diagonal of Pascal’s triangle
(written in six digit strings) is 999,997,000,002,999,999.
1/999997000002999999 =
0.
000000 000000 000001 000003 000006 000010 000015 000021 000028 000036 000045 000055 000066 000078 000091 000105 000120 000136 000153 000171 000190 000210 000231 000253 000276 000300 000325 000351 000378 000406 000435 000465 000496 000528 ...
(Note: This sequence of
numbers is also known as the “Triangular Numbers”, and in also in C (n, 4) or
the “number of way’s to select 4 items from a group of n items”.)
Your can compare this
with the list of triangular number in the Online Encyclopedia: http://oeis.org/A000217 and http://oeis.org/A000217/b000217.txt.
|
The Numbers in the Fourth
Diagonal of Pascal’s Triangle:
A Sequence Number that will produce a
list of the terms in the fourth diagonal of Pascal’s triangle (written in
nine digit strings) is 999,999,996,000,000,005,999,999,996,000,000,001.
1/999999996000000005999999996000000001 =
0.
000000000 000000000 000000000 000000001 000000004 000000010 000000020 000000035 000000056 000000084 000000120 000000165 000000220 000000286 000000364 000000455 000000560 000000680 000000816 000000969 000001140 000001330 000001540 000001771 000002024 000002300 000002600 000002925 000003276 000003654 000004060 000004495 000004960 000005456 000005984 000006545 ...
(This Sequence of
numbers are also known as the “Tetrahedral Numbers”, and they are also the
numbers described in C (n, 3) or “the number of ways to choose 3 items from a
group of n items.”
You can compare this
sequence with the Online Encyclopedia of Number Sequences: http://oeis.org/A000292 and http://oeis.org/A000292/b000292.txt.
If you desire to
calculate more terms in this sequence I recommend using the free website http://www.wolframalpha.com/ and use
the inverse of the Sequence Number shown above (1/99999999600000000599999999600000000)
as the input. When the output is
calculate you can click on the button that say’s more digits (up to six
times) to display more digits (up to about 3900 digits). The output will be displayed in scientific
notation which you will want to convert to a regular notation. In this case you will need to add 36 zeros
to the front of the number and place a decimal point after the first zero.
|
The Numbers in the Fifth
Diagonal of Pascal’s Triangle:
A Sequence Number that will produce a
list of the terms in the fifth diagonal of Pascal’s triangle (written in nine
digit strings) is 999999995000000009999999990000000004999999999.
1/999,999,995,000,000,009,999,999,990,000,000,004,999,999,
999 =
0.
000000000 000000000 000000000 000000000 000000001 000000005 000000015 000000035 000000070 000000126 000000210 000000330 000000495 000000715 000001001 000001365 000001820 000002380 000003060 000003876 000004845 000005985 000007315 000008855 000010626 000012650 000014950 000017550 000020475 ...
(This Sequence of
numbers are also the numbers described in C (n, 4) or “the number of ways to
choose 4 items from a group of n items.”)
|
The Numbers in the Sixth
Diagonal of Pascal’s Triangle:
A Sequence Number that
will produce a list of the terms in the sixth diagonal of Pascal’s triangle
(written in nine digit strings) is 999,999,994,000,000,014,999,999,980,000,000,014,999,999,
994,000,000,001.
1/999999994000000014999999980000000014999999994000
000001 =
0.
000000000 000000000 000000000 000000000 000000000 000000001 000000006 000000021 000000056 000000126 000000252 000000462 000000792 000001287 000002002 000003003 000004368 000006188 000008568 000011628 000015504 000020349 000026334 000033649 000042504 000053130 000065780 000080730 000098280 000118755 000142506 000169911 000201376 000237336 000278256 000324632 000376992 000435897 000501942 000575757 000658008 000749398 000850668 000962598 001086008 001221759 ...
(This Sequence of
numbers are also the numbers described in C (n, 5) or “the number of ways to
choose 5 items from a group of n items.”)
|
The Numbers in the Seventh
Diagonal of Pascal’s Triangle:
A Sequence Number that
will produce a list of the terms in the seventh diagonal of Pascal’s triangle
(written in 12 digit strings) is 999,999,999,993,000,000,000,020,999,999,999,965,000,000,
000,034,999,999,999,979,000,000,000,006,999,999,999,999.
1/999999999993000000000020999999999965000000000034999999999979000000000006999999999999
=
0.
000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000001 000000000007 000000000028 000000000084 000000000210 000000000462 000000000924 000000001716 000000003003 000000005005 000000008008 000000012376 000000018564 000000027132 000000038760 000000054264 000000074613 000000100947 000000134596 000000177100 000000230230 000000296010 000000376740 000000475020 000000593775 000000736281 000000906192 000001107568 000001344904 000001623160 000001947792 000002324784 000002760681 000003262623 000003838380 ...
(This Sequence of
numbers are also the numbers described in C (n, 6) or “the number of ways to
choose 6 items from a group of n items.”)
|
The Numbers in the Eighth
Diagonal of Pascal’s Triangle:
A Sequence Number that
will produce a list of the terms in the eighth diagonal of Pascal’s triangle
(written in 12 digit strings) is 999,999, 999,992,000,000,000,027,999,999,999,944,000,000,000,069,999,
999,999,944,000,000,000,027,999,999,999,992,000,000,000,001.
1/999999999992000000000027999999999944000000000069999999999944000000000027999999999992000000000001
=
0.
000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000001 000000000008 000000000036 000000000120 000000000330 000000000792 000000001716 000000003432 000000006435 000000011440 000000019448 000000031824 000000050388 000000077520 000000116280 000000170544 000000245157 000000346104 000000480700 000000657800 000000888030 000001184040 000001560780 000002035800 000002629575 000003365856 000004272048 000005379616 000006724520 000008347680 000010295472 000012620256 000015380937 000018643560 000022481940 000026978328 000032224114 000038320568 000045379620 000053524680 ...
(This Sequence of
numbers are also the numbers described in C (n, 7) or “the number of ways to
choose 7 items from a group of n items.”)
|
The Numbers in the Ninth
Diagonal of Pascal’s Triangle:
A Sequence Number that
will produce a list of the terms in the ninth diagonal of Pascal’s triangle
(written in 15 digit strings) is 999,999, 999,999,991,000,000,000,000,035,999,999,999,999,916,000,000,
000,000,125,999,999,999,999,874,000,000,000,000,083,999,999, 999,999,964,000,000,000,000,008,999,999,999,999,999.
1/999999999999991000000000000035999999999999916000000
0000001259999999999998740000000000000839999999999999 64000000000000008999999999999999
=
0.
000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000001 000000000000009 000000000000045 000000000000165 000000000000495 000000000001287 000000000003003 000000000006435 000000000012870 000000000024310 000000000043758 000000000075582 000000000125970 000000000203490 000000000319770 000000000490314 000000000735471 000000001081575 000000001562275 000000002220075 000000003108105 000000004292145 000000005852925 000000007888725 000000010518300 000000013884156 000000018156204 000000023535820 000000030260340 000000038608020 000000048903492 000000061523748 000000076904685 000000095548245 000000118030185 000000145008513 000000177232627 000000215553195 000000260932815 000000314457495 000000377348994 000000450978066 000000536878650 000000636763050 000000752538150 000000886322710 000001040465790 000001217566350 000001420494075 000001652411475 000001916797311 000002217471399 000002558620845 000002944827765 000003381098545 000003872894697 000004426165368 000005047381560 000005743572120 000006522361560 000007392009768 000008361453672 000009440350920 000010639125640 000011969016345 ...
(This Sequence of
numbers are also the numbers described in C (n, 8) or “the number of ways to
choose 8 items from a group of n items.”)
|
The Numbers in the Tenth
Diagonal of Pascal’s Triangle:
A Sequence Number that
will produce a list of the terms in the tenth diagonal of Pascal’s triangle
(written in 15 digit strings) is 999,999, 999,999,990,000,000,000,000,044,999,999,999,999,880,000,000,
000,000,209,999,999,999,999,748,000,000,000,000,209,999,999, 999,999,880,000,000,000,000,044,999,999,999,999,990,000,000,
000,000,001.
1/999999999999990000000000000044999999999999880000000
00000020999999999999974800000000000020999999999999988 0000000000000044999999999999990000000000000001
=
0.
000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000001 000000000000010 000000000000055 000000000000220 000000000000715 000000000002002 000000000005005 000000000011440 000000000024310 000000000048620 000000000092378 000000000167960 000000000293930 000000000497420 000000000817190 000000001307504 000000002042975 000000003124550 000000004686825 000000006906900 000000010015005 000000014307150 000000020160075 000000028048800 000000038567100 000000052451256 000000070607460 000000094143280 000000124403620 000000163011640 000000211915132 000000273438880 000000350343565 000000445891810 000000563921995 000000708930508 000000886163135 000001101716330 000001362649145 000001677106640 000002054455634 000002505433700 000003042312350 000003679075400 000004431613550 000005317936260 000006358402050 000007575968400 000008996462475 000010648873950 000012565671261 000014783142660 000017341763505 000020286591270 000023667689815 000027540584512 000031966749880 000037014131440 000042757703560 000049280065120 000056672074888 000065033528560 000074473879480 000085113005120 000097082021465 000110524147514 000125595622175 000142466675900 000161322559475 000182364632450 000205811513765 000231900297200 000260887834350 000293052087900 000328693558050 000368136785016 000411731930610 000459856441980 000512916800670 000571350360240 000635627275767 000706252528630 000783768050065 000868754947060 000961835834245 001063677275518 001174992339235 001296543270880 001429144287220 001573664496040 001731030945644 001902231808400 002088319702700 002290415157800 002509710226100 002747472247520 003005047770725 003283866636050 003585446225075 003911395881900 004263421511271 004643330358810 005053035978705 005494563394320 005970054457290 006481773410772 007032112662630 007623598774440 008258898672310 008940826085620 009672348219898 010456592670160 011296854581155 012196604061070 013159493855365 014189367287524 015290266473625 016466440817750 017722355795375 019062702032000 020492404684400 022016633132000 023640810986000 025370626424000 027212042858000 029171309943776 031254974939760 033469894423680 035823246375345 038322542634090 040975641739527 043790762164380 046776495948315 049941822741810 053296124269245 056849199220528 060611278580710 064593041407180 068805631064170 073260671924440 077970286548154 082947113349100 088204324758550 …
(This Sequence of
numbers are also the numbers described in C (n, 9) or “the number of ways to
choose 9 items from a group of n items.”)
|
The Numbers in the
Eleventh Diagonal of Pascal’s Triangle:
A Sequence Number that
will produce a list of the terms in the eleventh diagonal of Pascal’s
triangle (written in 18 digit strings) is 999,999,999,999,999,989,000,000,000,000,000,054,999,999,999,
999,999,835,000,000,000,000,000,329,999,999,999,999,999,538, 000,000,000,000,000,461,999,999,999,999,999,670,000,000,000,
000,000,164,999,999,999,999,999,945,000,000,000,000,000,010, 999,999,999,999,999,999.
1/999999999999999989000000000000000054999999999999999
83500000000000000032999999999999999953800000000000000 04619999999999999996700000000000000001649999999999999
99945000000000000000010999999999999999999 =
0.
000000000000000000 000000000000000000 000000000000000000 000000000000000000 000000000000000000 000000000000000000 000000000000000000 000000000000000000 000000000000000000 000000000000000000 000000000000000000 000000000000000011 000000000000000066 000000000000000286 000000000000001001 000000000000003003 000000000000008008 000000000000019448 000000000000043758 000000000000092378 000000000000184756 000000000000352716 000000000000646646 000000000001144066 000000000001961256 000000000003268760 000000000005311735 000000000008436285 000000000013123110 000000000020030010 000000000030045015 000000000044352165 000000000064512240 000000000092561040 000000000131128140 000000000183579396 000000000254186856 000000000348330136 000000000472733756 000000000635745396 000000000847660528 000000001121099408 000000001471442973 000000001917334783 000000002481256778 000000003190187286 000000004076350421 000000005178066751 000000006540715896 000000008217822536 000000010272278170 000000012777711870 000000015820024220 000000019499099620 000000023930713170 000000029248649430 000000035607051480 000000043183019880 000000052179482355 000000062828356305 000000075394027566 000000090177170226 000000107518933731 000000127805525001 000000151473214816 000000179013799328 000000210980549208 000000247994680648 000000290752384208 000000340032449328 000000396704524216 000000461738052776 000000536211932256 000000621324937376 000000718406958841 000000828931106355 000000954526728530 000001096993404430 000001258315963905 000001440680596355 000001646492110120 000001878392407320 000002139280241670 000002432332329570 000002761025887620 000003129162672636 000003540894603246 000004000751045226 000004513667845896 000005085018206136 000005720645481903 000006426898010533 000007210666060598 000008079421007658 000009041256841903 000010104934117421 000011279926456656 000012576469727536 000014005614014756 000015579278510796 000017310309456440 000019212541264840 000021300860967540 000023591276125340 000026100986351440 000028848458598960 000031853506369685 000035137373005735 000038722819230810 000042634215112710 000046897636623981 000051540966982791 000056594002961496 000062088566355816 000068058620813106 000074540394223878 000081572506886508 000089196105660948 000097455004333258 000106395830418878 000116068178638776 000126524771308936 000137821625890091 000150018229951161 000163177723806526 000177367091094050 000192657357567675 000209123798385425 000226846154180800 000245908856212800 000266401260897200 000288417894029200 000312058705015200 000337429331439200 000364641374297200 000393812684240976 000425067659180736 000458537553604416 000494360799979761 000532683342613851 000573658984353378 000617449746517758 000664226242466073 000714168065207883 000767464189477128 000824313388697656 000884924667278366 000949517708685546 001018323339749716 001091584011674156 001169554298222310 001252501411571410 001340705736329960 001434461382227160 001534076755992935 001639875152957965 001752195368913990 001871392332785690 001997837760676615 002131920831862965 002274048887320496 002424648151381456 002584164477130236 002753064116158356 002931834513311496 003120985127073528 003321048276244908 003532580013585348 003756161027103408 003992397569688528 004241922417794061 004505395859893071 004783506715442026 005076973385101046 005386544932973061 005713002201638095 006057158960772920 006419863090160520 006801997797908170 007204482874707470 007628275984984380 008074373995802180 008543814344395330 009037676445227430 009557083137481880 010103202173909416 010677247751972451 011280482088242081 011914217037019726 012579815754171666 013278694407181203 014012323932439833 014782231840815648 015590004072554208 016437286902584328 017325788897318616 018257282924056176 019233608214112656 020256672480820776 021328454093562616 022451004309013280 023626449560794080 024856993808752105 026144920949101955 027492597286684530 028902474070617070 030377090094628145 031919074363390995 033531148826188520 035216131179263320 036976937738226486 038816586381919346 040738199569143076 ...
(This Sequence of
numbers are also the numbers described in C (n, 10) or “the number of ways to
choose 10 items from a group of n items.”)
|
The Numbers in the Twelfth
Diagonal of Pascal’s Triangle:
A Sequence Number that
will produce a list of the terms in the twelfth diagonal of Pascal’s triangle
(written in 21 digit strings) is 999,999,999,999,999,999,988,000,000,000,000,000,000,065,999,
999,999,999,999,999,780,000,000,000,000,000,000,494,999,999, 999,999,999,999,208,000,000,000,000,000,000,923,999,999,999,
999,999,999,208,000,000,000,000,000,000,494,999,999,999,999, 999,999,780,000,000,000,000,000,000,065,999,999,999,999,999,
999,988,000,000,000,000,000,000,001.
1/999999999999999999988000000000000000000065999999999
99999999978000000000000000000049499999999999999999920 80000000000000000009239999999999999999992080000000000
00000000494999999999999999999780000000000000000000065 999999999999999999988000000000000000000001
=
0.
000000000000000000000 000000000000000000000 000000000000000000000 000000000000000000000 000000000000000000000 000000000000000000000 000000000000000000000 000000000000000000000 000000000000000000000 000000000000000000000 000000000000000000000 000000000000000000001 000000000000000000012 000000000000000000078 000000000000000000364 000000000000000001365 000000000000000004368 000000000000000012376 000000000000000031824 000000000000000075582 000000000000000167960 000000000000000352716 000000000000000705432 000000000000001352078 000000000000002496144 000000000000004457400 000000000000007726160 000000000000013037895 000000000000021474180 000000000000034597290 000000000000054627300 000000000000084672315 000000000000129024480 000000000000193536720 000000000000286097760 000000000000417225900 000000000000600805296 000000000000854992152 000000000001203322288 000000000001676056044 000000000002311801440 000000000003159461968 000000000004280561376 000000000005752004349 000000000007669339132 000000000010150595910 000000000013340783196 000000000017417133617 000000000022595200368 000000000029135916264 000000000037353738800 000000000047626016970 000000000060403728840 000000000076223753060 000000000095722852680 000000000119653565850 000000000148902215280 000000000184509266760 000000000227692286640 000000000279871768995 000000000342700125300 000000000418094152866 000000000508271323092 000000000615790256823 000000000743595781824 000000000895068996640 000000001074082795968 000000001285063345176 000000001533058025824 000000001823810410032 000000002163842859360 000000002560547383576 000000003022285436352 000000003558497368608 000000004179822305984 000000004898229264825 000000005727160371180 000000006681687099710 000000007778680504140 000000009036996468045 000000010477677064400 000000012124169174520 000000014002561581840 000000016141841823510 000000018574174153080 000000021335200040700 000000024464362713336 000000028005257316582 000000032006008361808 000000036519676207704 000000041604694413840 000000047325339895743 000000053752237906276 000000060962903966874 000000069042324974532 000000078083581816435 000000088188515933856 000000099468442390512 000000112044912118048 000000126050526132804 000000141629804643600 000000158940114100040 000000178152655364880 000000199453516332420 000000223044792457760 000000249145778809200 000000277994237408160 000000309847743777845 000000344985116783580 000000383707936014390 000000426342151127100 000000473239787751081 000000524780754733872 000000581374757695368 000000643463324051184 000000711521944864290 000000786062339088168 000000867634845974676 000000956830951635624 000001054285955968882 000001160681786387760 000001276749965026536 000001403274736335472 000001541096362225563 000001691114592176724 000001854292315983250 000002031659407077300 000002224316764644975 000002433440563030400 000002660286717211200 000002906195573424000 000003172596834321200 000003461014728350400 000003773073433365600 000004110502764804800 000004475144139102000 000004868956823342976 000005294024482523712 000005752562036128128 000006246922836107889 000006779606178721740 000007353265163075118 000007970714909592876 000008634941152058949 000009349109217266832 000010116573406743960 000010940886795441616 000011825811462719982 000012775329171405528 000013793652511155244 000014885236522829400 000016054790821051710 000017307292232623120 000018647997968953080 000020082459351180240 000021616536107173175 000023256411260131140 000025008606629045130 000026879998961830820 000028877836722507435 000031009757554370400 000033283806441690896 000035708454593072352 000038292619070202588 000041045683186360944 000043977517699672440 000047098502826745968 000050419551102990876 000053952131116576224 000057708292143679632 000061700689713368160 000065942612131162221 000070448007991055292 000075231514706497318 000080308488091598364 000085695033024571425 000091408035226209520 000097465194186982440 000103885057277142960 000110687055075051130 000117891537949758600 000125519813934742980 000133594187930545160 000142138002274940490 000151175678720167920 ...
(This Sequence of
numbers are also the numbers described in C (n, 11) or “the number of ways to
choose 11 items from a group of n items.”)
|
To see more examples of
Sequence Numbers see my blog about Sequence Numbers:
|
Sequences of numbers seen is each diagonal
of Pascal’s Triangle can be described by Sequence Numbers. If you know how Sequence Numbers work, you
simply need to know which diagonal you want to describe and how many terms you
want to obtain (or more specifically, how many digits are contained in the
largest term you want to obtain).
If the largest term that you want to obtain
contains 12 digits then start with a string of 13 nines (9,999,999,999,999). This will ensure that all of the 12 digit
terms (and smaller terms) are accurate.
Additionally, you will get some 13 digit terms that are accurate. However the last 13 digit term will not be
accurate – it will be larger than the actual term. If you use 13 nines, the terms will be
written in 13 digit strings. If you use 6
nines, the terms will be written in 6 digit strings. Etc.
Now, suppose you want to get a sequence
that shows you the terms in the nth diagonal. In this case you want add an exponent at the
end of your string of nines – and this exponent will be whatever number “n” is.
999,9993 will
produce a sequence of terms in the third diagonal, and will write these terms
in six digit strings. All of the terms
up to 5 digits long will be accurate, and some six digit terms may be
accurate.
Now take the inverse and
calculate the decimal expansion of this fraction:
1/999,999^3 =
(I will separate each
term by spaces to make it easier to read.)
0.
000000 000000 000001 000003 000006 000010 000015 000021 000028 000036 000045 000055 000066 000078 000091 000105 000120 000136 000153 000171 ...
You can see the first 18
non-zero terms accurately listed above.
(This number sequences
is also called the Triangular Numbers and it is also terms of C (n, 3) which
is the number of ways to select 3 items from a group of n items.)
9,999,999,9995
will produce a sequence of terms in the fifth diagonal, and will write these
terms in 10 digit strings. All of the
terms up to 9 digits long will be accurate, and some 10 digit terms may be
accurate.
Now take the inverse and calculate the
decimal expansion of this fraction:
1/9,999999,999^5 =
(This time I will not
separate each term by spaces to make it easier to read.)
0.
00000000000000000000000000000000000000000000000001 00000000050000000015000000003500000000700000000126 00000002100000000330000000049500000007150000001001 00000013650000001820000000238000000030600000003876 00000048450000005985000000731500000088550000010626 0000012650000001495 ...
The first 23 non-zero
terms are accurately listed above.
|
David
C(n,12) written in 12 digit strings
ReplyDelete1/999999999987000000000077999999999714000000000714999999998713000000001715999999998284000000001286999999999285000000000285999999999922000000000012999999999999 =
0 . 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000001 000000000013 000000000091 000000000455 000000001820 000000006188 000000018564 000000050388 000000125970 000000293930 000000646646 000001352078 000002704156 000005200300 000009657700 000017383860 000030421755 000051895935 000086493225 000141120525 000225792840 000354817320 000548354040 000834451800 001251677700 001852482996 002707475148 003910797436 005586853480 007898654920 011058116888 015338678264 021090682613 028760021745 038910617655 052251400851 069668534468 092263734836 121399651100 158753389900 206379406870 266783135710 343006888770 438729741450 558383307300 707285522580 ...